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Abstract 

When shocks impinge on a surface separating fluids of two different densities, one observes the de- 

velopment and growth of various vortical structures. The flow induced by this Richtmyer-Meshkov (RM) 

instability depends on a variety of factors such as the shock strength, the density ratio of the fluids and the 

exact form of the surface perturbation. The most common way to model the form of the surface perturba- 

tion is through Fourier analysis which is suitable for large-scale sinusoidal structures and is straightforward 

mathematically. In surfaces of practical interest, however, to a wide range of application, there may also be 

a broad spectrum of high frequency modes in addition to the lower frequency modes described by Fourier 

methods. We propose here that these high frequency modes can be efficiently quantified in terms of wavelet 

analysis. 

From a numerical point of view, the scale that the roughness occurs at is far to small to numerically 

resolve and thus we propose that our new methodology can be used to model the subgrid scale generation of 

vorticity. Thus the combination of wavelet analysis and Fourier analysis will be used to model the generation 

of vorticity for the RM instability. 

'MS 9056, Sandia National Laboratories, Livermore CA 94551-0969; jairay@ca.sandia.gov 
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1 Introduction 

Material surfaces when examined on a fine scale will appear quite rough due to imperfections in the finishing 

process. Such fine scale information is far below resolving capabilities of modem numerical simulations. 

When shocks interact with density-stratified interfaces (the Richfmyer-Meshkuv hfclbdify,[ 11, [2]) they 

deposit baroclinic vorticity at the interface. The deposition, and the interfaces' subsequent evolution is 

affected by the large and small scales in equal measure. In  case the fine scales cannot be resolved in 

a numerical simulation, gaining an understanding of the vorticity dynamics and mixing at the interface 

requires one to develop a subgrid scale model for this vorticity generation. We propose here a method for 

modeling the subgrid scale information at the material interface based on wavelet analysis and combine 

this new method with the traditional methodology of modeling surfaces that based on Fourier analysis or 

spherical harmonics. 

Wavelet Analysis provides a new orthogonal basis set which is localized in both the physical space and 

the Fourier transform space. This localization makes wavelets an effective basis for the representation of 

localized features. Fourier analysis, on the other hand, provides an effective basis set in which to represent 

global, smooth, and periodic features. Many physical systems, however, are comprised of global smooth 

structure with localized small features superimposed. It is thus natural to represent such surfaces by com- 

bining a global smooth basis such as a Fourier or spherical harmonic basis with a local basis such as wavelet 

analysis. When shocks impinge on a surface modeled in this manner, a mixing region will immediately be 

induced from the portion of the representation modeled by wavelet analysis. This mixing region will also 

grow and be displaced with time. The quantification of mix in an analysis with a wavelet-resolved/ modeled 

subgrid structures will be drastically different from one where these have been ignored to obtain a clean 

bubble-spike configuration. We take the first step in that direction by quantifying the vorticity deposition on 

the surface due to each of these bases. 

2 Generation of Vorticity 

Circulation deposition is the dominant fluid dynamical process in early time Richtmyer-Meshkov instability 

environment; its quantification provides a measure of the interfacial mixing as well as a basis for model 

building and scaling. The physical problem may be characterized by a shock wave of Mach Number M 
propagating in a rectangular shock-tube through a gas of density po (and ratio of specific heats 'yo), and 

an interface separating a gas of density Pb (and ratio of specific heats ' yb) .  Both the gases are assumed 

to be stationary. The parameter space is five dimensional : the shock strength (characterized by <(M) = 
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(p1 - po)/pl, the normalized pressure jump across the incident shock), the stratification (characterized by 

q = pb/po), the geometry of the interface, yb and yo. Note that q is related to the better known Atwood 

number by 
r l - 1  At = - 
r l + 1  

The incident shock refracts at the interface and bifurcates into a transmitted shock and a reflected wave. 

There are two generic classes of interaction : “slow-fast’’ (s/f) and “fast/slow” (f/s). If the speed of the 

transmitted shock is higher (lower) than the incident shock, then the interaction is termed slow-fast (fast- 

slow). For the parameter regime considered in this paper, it is sufficient to examine the sound speed in the 

two media to determine whether the interaction is s/f or f/s. We will focus on f/s interactions where the 

density ratio r ]  is greater than unity and where the reflected wave is a shock wave, which is typical for a 

fast-slow refraction. If the local angle between the shock and the interface is smaller than a critical angle 

a(M,q), the incident, reflected and transmitted shocks all meet at a node on the interface and the refraction 

is termed regular. 

The vorticity evolution equation in 3D inviscid compressible flow is 

The derivation of Eq. (1) can be found in [5]. The first term on the right in Eq. (1) is the baroclinic 

source term. As the shock traverses the interface, a misalignment of pressure and density gradients leads to 

rapid vorticity deposition on the interface. After the rapid vorticity deposition phase, the slower evolution 

of the interface is driven mainly by the baroclinic vorticity deposited earlier. In this study the gas interface 

is initially vorticity free. Hawley and Zabusky [6] proposed a vortex paradigm to explain the evolution of a 

sawtooth perturbation in terms of vortex dynamics. Sturtevant [7] investigated interfaces with large sawtooth 

perturbations where he observed the formation of a large stratified wall vortex. This was corroborated by 

Yang, Chern et. al. [8] who employed Hawley and Zabusky’s vortex paradigm to explain the evolution of 

the shocked interface. 

Samtaney and Zabusky [9] developed exact and approximate expressions for circulation deposition for 

fast/slow (f/s) interfaces using shock polar analysis for simple interfaces (oblique, sinusoidal and circular). 

Their approach was extended to s/f interfaces with regular shock refractions (refractions with a transmitted 

shock and a reflected centered expansion (RRE)) in [lo]. 

In this study, we will attempt to develop an estimation of the vorticity deposition on “generalized” 2D 

surfaces. We assume that the surface is described by the superposition of two types of basis functions. 

The smooth, global and/or periodic charateristics of the surface will be captured with a harmonic function 

3 



(Fourier analysis on a line or plane or spherical harmonics on the surface of a sphere) while thc sharp, 

localized features will be represented using wavelets. Wavelets are very localized and not very smooh and 

are thus suitable for representing and analyzing data that is of the same localized “rough” nature. Thesc two 

disparate basis sets can be made to work together in order to get an efficient representation of inforination 

that contains both global smooth perturbations and local rough perturbations that are superimposed. 

Our analysis will, therefore, proceed assuming that the interface between the two density fields i s  rep- 

resented by a superposition of harmonic functions and wavelets. Since wavelets are less well-known than 

harmonic basis function, we will begin our analysis assuming only a wavelet representation for the interface, 

for a one dimensional interface manifold in a two dimensional experiment and, 

for the two dimensional interface manifold in the three dimensional experiment. We will assume that the 

vertical shock wave impinges orthogonally on the surface in both two and three dimensions. A 2D example 

of a shock impinging on an interface is Seen in Fig. 4(a). 

In our next section (Section 3) we introduce wavelet analysis and the notation that we will need through- 

out the remainder of the manuscript. An extension of this wavelet analysis to 3D with spherical harmonics 

in Appendix B. In Section 4 we will derive scaling expressions (in M and q) for the circulation deposition 

on a sinusoidal interface with superimposed Haar wavelets. In Section 5 we will present numerical solutions 

of the Euler equations, simulating shock interactions with sinusoidal interfaces with a set of identical Haars 

wavelets (but translated along the lattice of wavelet basis functions) and compare the scaling expressions 

vis-a-vis the numerical simulations. 

3 Wavelet Analysis 

Possibly the most instructive way to think of wavelets is in contrast to traditional analysis techniques such as 

Fourier analysis. With Fourier analysis we analyze discrete or continuous data using basis functions which 

are global, smooth and periodic. This analysis yields a set of coefficients, say, U k .  which gives the amount 

of energy in the data at frequency I C .  Wavelet analysis, by contrast, analyzes data with basis functions 

which are local, slightly smooth, not periodic, and which vary with respect to scale and location. Wavelet 

analysis thereby produces a set of coefficients bj,k which give the amount of energy in the data at scale j 
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and location I C .  Wavelet analysis can serve as a good complement to Fourier analysis. In fx ( .  data which 

is efficiently analyzed with Fourier analysis often is not efficiently analyzed with wavelet analysis and the 

opposite situation also holds. 

For our purposes here we will confine o u r  discussion to the so-called orthogonal wavclcls and s p i f i -  

cally the Daubechies family of wavelets. The orthogonality property leads to a clear indicalioii when data 

deviates from a low-order polynomial, the importance of which will become clear when wc discuss numer- 

ical methods. 

3.1 Theoretical Background in the Continuous World 

To define Daubechies-based wavelets, see Daubechies (1988) and Erlebacher (19961, consider the two func- 

tions r#(z), the scaling function, and $(z), the wavelet. The scaling function is the solution of the dilation 

equation, 
L-1 

+(z) = f i  1 hk+(2z - I C ) ,  (4) 

which carries the name “dilation equation” since the the independent variable z appears alone on the left 

hand side but is multiplied by 2, or dilated, on the right hand side. One also requires the the scaling function 

d(z) be normalized: J-”, +(z)dz = 1. The wavelet +(z) is defined in terms of the scaling function, 

k=O 

L-1 

One builds an orthonormal basis from dJ(z) and +(z) by dilating and translating to get the following 

functions: 

&(z) = 2-4h(2--% - I C ) ,  

and 

&(z) = 2-4$(2- jz  - I C ) ,  (7) 

where j, k E 2. j is the dilation parameter and k is the translation parameter. 

It is usual to let the spaces spanned by G(z) and ~ ( z )  over the parameter I C ,  with j fixed, be denoted 

by V, and Wj respectively, 

kEZ 
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The spaces V, and Wj are related by, 

where the notation VO = VI @ W1 indicates that the vectors in VI are orthogonal to the vectors in W1 and 

the space Vi is simply decomposed into these two component subspaces. 

The coefficients H = {hk}fz i  and G = { g k } f g i  are related by g k  = (-l)khL-k for k = 0, ...) L - 1. 

All wavelet properties are specified through the parameters H and G. If one's data is defined on a continuous 

domain such as f(x) where z E R is a real number then one uses 4 ( x )  and &(x) to perform the wavelet 

analysis. If, on the other hand, one's data is defined on a discrete domain such as f(i)  where i E 2 is 

an integer then the data is analyzed, or filtered, with the coefficients H and G. In either case, the scaling 

function 4(x )  and its defining coefficients H detect localized low frequency information, i.e., they are low- 

pass filters (LPF), and the wavelet $(z) and its defining coefficients G detect localized high frequency 

information, i.e., they are high-pass filters (HPF). Specifically, H and G are chosen so that dilations and 

translations of the wavelet, &(z), form an orthonormal basis of L2(R) and so that $(x) has M vanishing 

moments which determines the accuracy. In other words, 113k (2) will satisfy 

where 6k( is the Kronecker delta function, and the accuracy is specified by requiring that $(x) = '$!(.) 

satisfy 

for m = 0, ...) M - 1. This statement on accuracy can be explained in an alternative manner. Recall 

that within the scaling function subspaces V, one can reconstruct low order polynomials exactly up to a 

given order so that xo, x * ,  ..., xM-' can be represented exactly by appropriately choosing scaling function 

coefficients. Accordingly, the subspace Wj which is orthogonal to V, and consequently the basis elements 

$j(x) of Wj will be orthogonal to all elements contained in Vj such as these low-order polynomials. So, one 

can see that by specifying the number of vanishing moments of the wavelets one has in effect specified the 

number of polynomials which can be represented exactly and hence the numerical accuracy of the method. 

For representing functions in L2(R) one can see from the above expressions that for any function f ( x )  E 

L2(R) there exists a set { d j k }  such that 
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where 

The two sets of coefficients H and G are known as quadrature mirror filters. For Daubechies wavelets 

the number of coefficients in  W and G, or the length of the filters H and G, denoted by L, is related to the 

number of vanishing moments M by 2M = L. For example, the famous Haar wavelet is found by defining 

as ha = hl = 1. For this filter, H ,  the solution to the dilation equation (4), #(z), is the box function: 

$(z) = 1 for z E [0,1] and #(x) = 0 otherwise. The Haar function is very useful as a learning tool, but 

because of its low order of approximation accuracy and lack of differentiability it is of limited use as a basis 

set. The coefficients H needed to define compactly supported wavelets with a higher degree of regularity 

can be found in Daubechies (1988). As is expected, the regularity increases with the support of the wavelet. 

The usual notation to denote a Daubechies-based wavelet defined by coefficients H of length L is DL. 

3.2 Practical Implementation in the Discrete World 

Naturally, infinite sums and integrals are meaningless when one begins to implement a wavelet expansion on 

a computer. One must find appropriate ways to implement discrete counterparts to the continuous operations 

which were outlined in the previous subsection. That is, nothing is continuous on a computer and since the 

original wavelet analysis was derived in the continuous world of differential and integral mathematics is it 

necessary to discuss a bit concerning a discrete version of the above continuous theory. Generally, operations 

such as integration are easily approximated with an appropriate order quadrature formula, but one would like 

to use as few quadratures as possible to limit the number of approximations which are made. We will see in 

this section how we can easily perform all the wavelet decompositions with relatively few approximations. 

In a continuous wavelet expansion functions with arbitrarily small-scale structures can be represented. 

In practice, however, there is a limit to how small the smallest structure can be depending on, e.g., the 

numerical grid resolution or the sampling frequency in a signal processing scenario. Hence, on a computer 

an approximation would be constructed in a finite space such as 

with the approximation being 

with 
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utilizing orthogonality. Within this expansion, the scale j = 0 is arbitrarily chosen as the finest scale 

required, and scale J would be the scale at which a kind of local average, q$(z), provides sufficient large 

scale information, Le. the first term in Eq.( 16) provides the local mean around which the function oscillates. 

One must also limit the range of the location parameter, k Assuming periodicity of f(z) implies period- 

icity on all wavelet coefficients, 4 and &, with respect to k. For the non-periodic case, since k is directly 

related to the location, a limit is imposed on the values of k when the location being addressed extends 

beyond the boundaries of the domain. 

The wavelet decomposition matrix is the matrix embodiment of the dilation equation, Eq.(4), defin- 

ing the scaling function and the accompanying equation defining the wavelet, Eq.(5). The following two 

recurrence relations for the coefficients, 4 and 4, in @.( 16) are given as 

L L 
si = hl ls i i&-2  7 4 = gn<Y$-:! 7 

n=l n=l 

as obtained from Eqs.(4)-(5), and we recall that h, refers to the chosen filter while we have gn = -(-l)nhL-n. 

Denote the decomposition matrix embodied by these two equations, assuming periodicity, by PF" 

where the matrix subscript denotes the size of the square matrix while the superscripts indicate that P is de- 

composing from scaling function coefficients at scale j to scaling function and wavelet function coefficients 

at scale j + 1, i.e. Piz;"" maps S'j onto Zj+l and d j+ l :  
+ . .  

where we by i'j refer to the vector containing the coefficients at scale j. Note that the vectors at scale j + 1 

are half as long as the vectors as scale j .  

Suppose, for illustration, the wavelet being used is the four coefficient 0 4  wavelet, and that one wants 

to project from 8 scaling function coefficients at scale j to 4 scaling function coefficients at scale j + 1 and 4 

wavelet coefficients at scale j + 1. The decomposition matrix for the case of periodic boundary conditions, 
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Pi””, thus becomes 

where the periodicity is reflected in the coefficients being wrapped around. If the boundary conditions 

are not periodic, then one must extend the data and the scaling function coefficients at every scale in a 

“smooth” manner. This involves extending the scaling function data with a polynomial one order higher 

than the number of vanishing moments of the wavelet. But, for the purpose of understanding the method, 

it is sufficient to study the periodic matrix such as the one that we have created above. It is a matrix such 

as PJJ+l that is applied directly to the data and then directly to each level of scaling function coefficients. 

To be perfectly correct one would first approximate the scaling function coefficients at the finest scale using 

the raw data, however, in practice it seems to make very little difference if one simply considers the raw 

data to be the scaling function coefficients. So, for our purposes here we will simply use the raw data as 

the scaling function coefficients on the finest scale. The repeated application of the matrix yields the 

wavelet coefficients at the various scales, and it is these wavelet coefficients that provide a guide to the errors 

committed during the numerical calculation. Let us consider that the raw data is given and it is assumed 

to be the scaling function coefficients on the finest scale, s‘o. One wavelet decomposition yields the scaling 

function coefficients and wavelet coefficients at scale j = 1, $1 and 21. A second application of the wavelet 

decomposition matrix will yield the vectors $2 and 2 2 .  It is the vectors 21, &, ... which yield the critical 

information on the numerical errors. If, for example, one sees that the values of the dl are relatively large in 

the middle of the vector, then it is clear that within this one dimensional vector the largest errors will be in 

the middle of the one dimensional domain from which this vector was derived. 

. .  

4 

3.3 Wavelet Analysis in 2D 

Generally, our fields of interest will be in two or three dimensions so must make a note on higher dimensional 

wavelet transforms. The approach that is most commonly taken is to use the tensor product of the one 

dimensional transform in order to generate the two dimensional transform. Recall that in one dimension that 
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we can break up the subspace VO such that, 

So, if one takes the tensor product of this one dimensional analysis with another one dimensional analysis 

then one obtains, 

vo €3 vo = (Vl €I3 Wl) 8 (Vl E) WI), (19) 

which yields 

vo €3 vo = (V 8 K )  G3 (K €3 Wl) (3 (W1 €3 VI) (33 (W1 €3 W1). 

One can think of the subspace, 

Vl €3 Vl 

as representing the horizontal and vertical average, low-pass filtering, of the information contained in Vo 8I 

VO. The subspace 

Vl €3 Wl 

represents a horizontal low-pass filtering process and a vertical high-pass filtering process. Such a subspace 

would capture horizontal edges. On the other hand, the subspace 

would represent a horizontal high-pass filtering process and a vertical low-pass filtering process. One would 

be able to detect vertical edges in such a subspace. Finally, when the high pass filter is applied in both the 

vertical and horizontal directions one arrives at the subspace, 

W l @  Wl. 

It is this subspace that we are primarily interested in since it will detect variation in both the horizontal 

and vertical directions. Note that as in the one dimensional case we certainly will perform many levels of 

wavelet decompositions, and the subspaces that we will primarily be interested in will be, 

Wj 8I Wj, 

for j = 1,2,3,4 ... Generally, decompositions up to j = 4 will be sufficient. 
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4 Circulation deposition on interfaces 

Samtaney et al [9] developed an analytical expression for circulation by a shock of strength M at a gas-gas 

interface with density ration 7, 7 > 1 deposition as 

where runit is the circulation deposition per unit original interface (scaled by a/%), M is the Mach 

number of the shock impinging on an interface inclined at angle cr and separating gases of density contrast 

77. co is the speed of sound in the incident gas. In this section we derive a simpler, though less accurate 

model, which embodies the correct scaling in M and 7. 

Fig. I shows an incident shock (Mach number M )  propagating to the right. It traverses a “diffuse” 

interface (where the interface width Si is small compared to some other length scale e. g. the radius of 

curvature, or amplitude or wavelength of a sinusoidal interface or the distance over which the circulation 

deposition is being measured). The angle of the interface from the vertical is a. Pressure and density in the 

unshocked transmitted gas are PI and PI. p~ is the density of the transmitted gas m / p ~  = q. 

In reality, the shock, at the interface will refract into a transmitted and reflected wave, all of which will 

intersect at a node if cr < cyc, a critical angle [9]. Also, the incident shock interacts with the diffuse interface 

and bends through it. We will ignore such shock structures NN O(&). 

Assumptions : 

1. Si << L, where L is some length scale of the interface. This ensures that the interface is very sharp, 

but not discontinuous. 

2. The density distribution in space is G(x,  y). So 

For example, 
1 + tanh( -</S,) 

2 G(X,Y)  = 

where < is the perpendicular distance of a point (2, y) from the interface, as shown in Fig. 1. 

3. The pressure gradient V P  is assumed to be horizontal i. e. perpendicular to the incident shock and the 

pressure jump is assumed to be equal to the pressure jump of the incident shock. In case of regular 

refraction, the incident, reflected and transmitted shocks meet at a node on the interface. which is 

where the circulation gets deposited. Picking the incident shock to decide the pressure gradient is 
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approximate and is valid only when the reflected shock is weak Le. when a is “small”. However i t  

does capture the effect of the strength of the incident shock wave. 

Let the shock speed be W = MQ where Q is the speed of sound in the unshocked medium. Thus the 

pressure and density distribution in the incident gas at any time t is given by 

P = P1+APH 1 - -  
i t )  

where H ( .  . .) is the Heaviside function. 

vp = ( P I  - a) [ G S +  Gyj] 

where p = 1 - &, where X ,  is the shock position. Thus the baroclinic term is 

Let I‘ be the circulation deposited by the shock on the interface in time T .  

r = - l z d t / ” = ” /  2=oo ___ (11-l) APG,6(P) dxdy  
y=-m z=--00 rl W t p I q [ 1  - YG] 

But 

so 
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where L s i r i a  = X ,  is the distance traveled along the x-axis by the shock in time T .  Note the integration 

limits on Q were placed using the following relations: 

1)-1 
71 

Y - + W  , t-+-m,Q+ 

Y + - W  , (-+m,Q+O 

(29) 

Thus, the sculedcirculation deposited per unit original interface length runit(= r / L  x a / ~ )  is 

where AP, the pressure jump across the shock is replaced by $(M2 - 1) and W = MQ. Simplifying 

As M -+ 1 and 11 + 1, the expression approaches the one in [9]. 

Deduction 1 

Given an arbitrary line S between points A and B, the net circulation deposited is 

4.1 Circulation deposition on a collection of Haar wavelets 

Thus far our analysis has been in acompletely general setting allowing for any choice of wavelet. In practice, 

we expect that the Haar wavelet will be the wavelet of choice for surface characterization. The reason for 

this is that the Haar wavelet is the only wavelet in the Daubechies class of wavelets that does not overlap 

with the adjacent Haar wavelet that has been translated to the next position in the lattice of wavelet basis 

functions. Because of this non-overlap, we expect that the vorticity induced on adjacent and superimposed 

Haar wavelets will be additive. Thus, given an expression for the wavelet expansion of a surface, we expect 
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to be able to simply add up the vorticity induced on each of the individual wavelet basis functions. We will 

now proceed to develop a model for the circulation deposited on an interface composed entirely of Haar 

wavelets. 

Let there be a Haa-wavelet shaped interface as shown in Fig. 2, about to be crushed by a shock. Circu- 

lation is deposited on the sides of the Haar where sin cr # 0 i.e on sides AB, CD and 3. The circulations 

deposited are 

h h  

where H is the height of the Haar wavelet and S is the support. The net circulation on A B a E F  is 0 as 

X F  - XA = 0. ,5 is the circulation deposition per unit interface length and can be (I [9] or p (as derived 

above) depending upon whether we want a scaling expression or an accurate measure of the circulation. 

Define a wavelet $j(y) at scale j as 

where $g(y) is the mother wavelet, $ its generating function and Sj is the support of the wavelet at scale j .  

We define a x-integrated vorticity as 
00 

Q(y) = w,dx 
I-UJ 

where wi is the vorticity on the interface. Then, using sincr = f l  or 0 depending upon the slope of the 

Haar, the Q(y) for the Haar interface is 

= -2-jl2Ji [s (;) - 26 ($ - 1) + 6 ($ - 2)] 

and for a translated Haar 

= -2-jI2ji 

(35) 

6 (: - - k  ) -26 (: --(k+l) ) + 6  (: --(k+2) )] (36) 
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The circulation deposited on the interface I ( y )  = z j , k  d j k $ j k ( y )  is 

We also define 

Note that these distributions change as the interface evolves in time; thus Eq. 37 is strictly valid only imme- 

diately after the shock-interface interaction. 

Assuming the “horizontal” sides of the Haars at different scales and translations do not cancel each 

other, we can get the upper limits on the positive and negative circulations generated 

6 - - ( k + l )  1 

where 0 _< y 5 L. 

5 Computational Examples 

In this section we compare E?q. 37 with numerical simulations to verify the suitability of Q1(,) as a scaling for 

the circulation on the interface. In order to simulate the interaction of a shock with a Haar-wavelet perturbed 

sinusoidal interface, we make the following assumptions : the flow is inviscid, the gases are perfect and there 

are no chemical reactions between the two gases, which are further assumed to be in thermal equilibrium. 

We have used the conservative level set formulation of Mulder et. al [ 111 to track the interface. The basic 

idea is as follows : Consider a function <(x, t) which is defined everywhere in the domain. Then a particular 
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value defines the interface. In our case, we initially use [(x, 0) = +l(-1) in the incident (transmitted) gas. 

We define the interface as <(x, t) = 0. The function <(x, t) is governed by the partial differential equation 

where u = {u, v} is the velocity vector. 

The governing equations (the compressible Euler equations) in conservative form are 

ut + 3(U), + G(U), = 0 

where 

E is the total energy, related to the pressure p by p = (y - 1)(E - ip(u2 + v2)) and [ is the interface 

tracking function. 

5.1 Initial and boundary Conditions 

Fig. 4(a) shows a setup of the interaction being simulated. The boundary conditions are post-incident shock 

values at the left boundary and quiescent flow ($6, p6, u = 0) at the right boundary. The upper and lower 

boundaries are perfectly reflecting i.e. u n = 0, where n is the unit normal to the plane of the boundary. A 

sinusoidal interface with A/X = 0.05 separates the two gases - in the particular case, the density contrast is 

10. The width of the shock tube was fixed at 1.0, which corresponds to X/2 for the sinusoidal interface, X 

being the wavelength. Inscribed on the sinusoidal interface are Haars of scale j = 2, i. e. H j / S j  = 2-3/2j = 

1/8 where H j  and Sj are the height and support of the wavelet. Further, S2/X = 0.1 ; consequently, as 

seen in Fig. 4, there are a little more than 5 wavelets on the interface. In the absence of the sine wave, the 

total interface length (per wavelet) on which circulation gets deposited is 4Hz. Assuming that there are 5 

wavelets on the interface, the total circulation-deposition area in the wavelets is Pj 

The compressible Euler equations (with an extra equation for the interface tracker) were solved over a 

regular grid with A shock moving in the positive x-direction is initialized using the Rankine-Hugoniot jump 
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conditions. The shock was initialized at XO = lOAz left of the interface which is spread over 2Ax to 3A2. 

The numerical method is described in Appendix A 

5.2 Quantifications and Grid-Convergence 

We now quantify the circulation in the numerical simulations and compare it with the analytical results. At 

any instant the total interfacial vorticity is computed as 

where D = (i, j ,  t)Vl<(x, t)l < 1. w ( i ,  j ,  t )  is computed using a second-rder central difference as follows 

w(i + l , j , t )  - w(i - l , j , t )  u( i , j  + 1 , t )  - U ( 2 , j  - 1,t)  u(i , j , t)  = - 
2Ax 2AY 

We now need to decide the minimum resolution need to capture the vorticity deposition on a Haar 

wavelet. In the resolution convergence study we present the results of a Air-R22 interface (density contrast 

3, 70 = 1.4, 76 = 1.1732) accelerated by a Mach 1.5 shock. Half a Haar wavelet (scale j = 2 i. e. 

= 1/8) is inscribed on a flat vertical interface. Note that only the large horizontal side of the Haar 

wavelet is included in the computational domain. Fig. 2 shows a schematic of the setup - however, since only 

half a Harr is considered, only ĉ o is present and the vertical sides extend to the shock-tube walls. In Fig. 3 

we present the circulation deposited on the Haar wavelet when the “horizontal” part (equal to 2H2; where 

the vorticity is deposited) is resolved by lOAz, 20Az and 40Ax; these correspond to S2 = 40,80 and 

16042. The last two resolution do not change the circulation deposition much and we will henceforth, use 

S2 = 8062.  As described in Section 5.1, S2/X = 0.1 and so the sine wave will be resolved as X = 800Ax. 

5.3 Description of the Shock - Interface Interaction 

In Fig. 4 we show the initial condition of a half a sinusoidal mode with Haar wavelets superimposed on 

it. A shock of Mach number M = 10 propagates from the left. The density contrast q = 10 and 70 = 

76 = 1.4. We define 7, the “interfacecrushing” time of the shock, as the time needed by the interface to 

travel 2(A + H ) ,  A and H being the amplitude of the sinusoidal perturbation and the height of the Haar 

respectively. In Fig. 4(b) to (f) we see the evolution of the flow at the times indicated in the caption. We see 

the shock crushing the interface, depositing positive and negative vorticity. In Fig. 4 (b) and (c) the Haar 

wavelets are seen to become mushroom shaped dipoles and move away from the original interface under 

self-induction. The corresponding times are t / ~  = 2.2 and 5.99. By (d), we see that the dipoles widths are 

approximately Sj .  t / ~  = 12.04 for this frame. By (e) and (f), ( t / ~  = 20.36,44.79) we see Haar-induced 
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eddies comparable in size to the “wall vortex” [ 121 (bottom left in the last picture) and interact with each 

other strongly, similar to the bubble-competition described in [ 131. Note that the portion of the interface 

represented by the wavelets, becomes turbulent very quickly and will comprise the mixing region that will 

be characterized by a mixing width. These, however, cannot be modeled properly using the (inviscid) 

Euler equation. The sinusoidal structure can be seen throughout the frames and in the later frames we 

identify the familiar bubble-spike structure of shock-sine wave interactions, though with a multiple roll-ups 

characterized by merged Haar-generated mushrooms. Thus we can identify three regimes here (a) an early 

time t - O(T) ,  when the baroclinic vorticity has been deposited but the wavelet evolution is still nascent 

(b) a regime where wavelet generated mushrooms become approximately Sj in size and interact with their 

neighbors ( Fig. 4(c) and (d)) and (c) late times when mushrooms merge to form a deformed bubble-spike 

interface. 

In Figure (5)  we plot the circulation for a Mach 1.5 shock and for q = 3.0 (Air-R22, 70 = 1.4, 7 6  = 

1.1732). In Figure (5) (below) we plot the circulation for a Mach 10 shock, q = 10 and 70 = 7 6  = 1.4. 

For each parameter set we plot the circulation on an interface with and without Haar wavelets. The net 

circulation is unaffected by the presence of Haars; as shown in Section 4, their net circulation is zero. 

Plotting the positive and negative circulation separately reveals the Haars’ contributions; they have a little 

more circulation on them than the sinusoidal perturbation. Further, the circulation deposition in the M = 

10, q = 10 case is 20 times larger than the other. 

The wavelet collection in Fig. 4(a) can be characterized as 

where Hj and Sj are the height and the support of the Haar wavelets at scale j respectively. Note that we 

have wavelets only of one scale, j = 2. Also, Eq. 38 becomes 

On the other hand, the sinusoidal perturbation on the interface, described as 3: = - A  cos ?ry/L has a 

circulation distribution of 
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where A is the amplitude and L the width of the shock tube, L = X/2. Note that the circulation on the 

wavelets and the sinusoidal perturbation are 

where the facts that H j / S j  = 118, SjlX = 1/10 and A/X = 0.05 have been exploited. Thus the magnitude 

of the positive and negative circulation on the wavelets and that on the sinusoidal perturbation should be 

roughly the same, regardless of M and q, as shown in Fig. 5. Note: Q. 45 is valid immediately after 

circulation deposition and before interfacial evolution. 

Eq. 37 can serve as a means of scaling the Q distribution for a range of M and density ratios q. R 

distributions change over time as the Haars and the sinusoidal interface evolves. Eq. 37 is valid only in the 

early time; as the Haars evolve and dipoles are formed (Fig. 4(c) and (d)), the ‘‘spiky” distribution predicted 

by Fq. 37 will evolve into a saw-tooth configuration as shown in Fig. 6 and 7. We rewrite Eq. 37 for late 

times as Q+j,k = QSsj(y)  where Ssj is the sawtooth function with wavelength Sj. Assuming that the 

circulation on a Haar remains the same @e. secondary baroclinic deposition by reflected shocks etc) is 

small, Q = p. For scaling purposes we will use p = /I rather than 0. Thus the scaling quantity for 52, 

Q,, is R, = p(M,q) (Ss j  + W(y,t)) ,  where W is the time-evolved distribution of R on the sinusoidal 

perturbation, whose initial condition was Qsine. In Figs. 6 and 7 we plot the numerical R divided by p to 

show the ( M , q )  scaling. Even though the circulation deposition in the two cases differ by a factor of 20 

(see Fig. 5) ,  the scaling factor collapses them between 0.5 and 2.0. The initial “spiky” distribution of Rq,) 

(Eq. 37) at t / ~  N 1 is seen to evolve into a smoother sawtooth distribution. As the base of the R distribution 

widens, the peaks fall, indicating a conservation of circulation in the Haar generated mushrooms. Later in 

time, when bubblecompetition and merger occurs for these Ham-generated dipoles, one sees dual peaks / 

troughs within one Sj region; this is particularly true for the M = 10, q = 10 run in Fig. 7 at t / ~  = 11.22. 

We also note that even though the dipoles have grown to Sj in width, and have translated away from the 

interface, they have not moved along it. Thus the peaks-and-troughs distribution in Figs. 6 and 7 at t/-r N 1 

are every similar to that at t/-r - 10. 
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6 Conclusions 

Our goal in this manuscript has been to outline a new methodology that can be used to effectively measure 

the mix induced between two materials when a shock impinges on their interface. Traditionally such studies 

have been conducted by modeling the interface between the materials with Fourier analysis and resolving 

the modes in numerical simulations. Fine structures, inherent in any realistic material interface, have been 

typically ignored because of the large computational cost assocaited with resolving them. In  this paper we 

have established Haar wavelets as a basis for represnting fine structures. A scaling model for the circulation 

deposition on such structures was developed and validated vis-a-vis Euler simulations. We find that though 

the Haar-generated mushrooms (dipoles) roll-up, widen and move away from the interface, they do not 

move along it. Thus the spatial circulation distribution, measured in an integrated-fashion along the interface 

remains largely unchanged till the widening mushrooms start interacting and merging with their neighbors. 

to form larger structures. At late times the familiar bubble-spike structure is recovered, but these are highly 

contorted by large vortical structures, originating from the merger of Haar-generated mushrooms. While this 

paper has captured the driving force (vorticity), the kinematics (the evolution of the Haars and their mergers) 

is left for future study. Our new method is intended to be a first step in overcoming the limitation of resolving 

small scale roughness on surfaces by modeling the subgrid scale vorticity generation with wavelet analysis 

and combining this information with the traditional Fourier approach. Thus far our analysis has been mainly 

on the theoretical level, but we intend in follow up work to draw closer the connection between the wavelet 

based subgrid scale model of vorticity generation to actual estimates of the physical mixing process between 

materials. 



Figure 1 : Schematic of a shock traversing an interface inclined at CY to the shock. The incident gas of density 

pr is on the left; the transmitted gas p~ on the right. The shock moves from left to right: its position on the 

X-axis is X,. The interface is diffused over a small width 6. 
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Figure 2: Schematic of a Haar wavelet on a vertical interface. The shock travels from the left to the right. 

Circulation is deposited only on AB, C D  and E. The net circulation on the entire Haar wavelet is zero. 

H and S are the height and support of the Haar wavelet respectively. 

hh 
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Figure 3: Circulation deposition on the “horizontal” part of the Haar wavelet as described in Section 5.2. 

H I S  = 1/8 where H and S are the height and support of the wavelet. S has been resolved by 40,80 

and 160Az as shown by the 0, line and o symbols. Since the last two resolutions do change circulation 

deposition by much, the lower resolution will be used. 
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Figure 4: (a) - (f), counting left to right, top to bottom. Snapshots from a M = 10, q = 10 interaction with 

the interface described in Section 5.1. We plot the density map, overlaying the “interface-tracker” to denote 

the gas-gas interface. We see “jets”, essentially vortex dipoles moving away from the sinusoidal interface. 

As time evolves, (f), the interface shows the presence of eddies comparable in size to the wall vortex at the 

base of the shock tube, indicating a thickening of the interfacial region. The x- and 9- axis units are in 

Ax = Ay. The time for the frames are t / r  = 0.0,2.2,5.99,12.04,20.36 and 44.79 respectively, where 

T = 2(A + H)/Mco is the “interface-crushing” time of the shock. 
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Figure 5:  Above : Circulation for a M = 1.5 shock interaction with q = 3 interface as described in 

Section 5.3. We plot the net, positive (r,) and negative circulation (F-) on the interface for a sinusoidal 

interface with and without Haar perturbation. While the contribution of the Haars to the net circulation 

is zero, at least at early time, (Section 5.3; also Inset), their presence is felt in the positive and negative 

circulation budgets, which are almost double of the no-Haar values. Bottom : The observations are borne 

out for a M = 10 shock with q = 10 interface. The o symbol denotes positive circulation on the interface, 0 

negative circulation and the A denotes the net circulation. Filled symbols are for Haar-perturbed interfaces. 

The interface crushing time (the time needed for the shock wave to travel a distance of 2(A + H)) are 0.14 

and 0.021 for the M = 1.5 and 10.0 cases respectively. 
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Figure 6: O / p  for the M = 1.5, q = 3.0 Air-R22 interaction. We see that p collapses the data between 0.5 

and 2.0. We see that the negative peaks are consistently larger (in magnitude) than the positive one since 

the circulation on the sinusoidal perturbation is also negative and adds to the Haars. The early time "spiky" 

distribution evolves into a sawtooth one around t / ~  N 4 and persists till t / ~  - 10. The dotted, dashed and 

solid lines are for t / ~  = 1.45,3.73 and 11.3. 
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Figure 7: f l / p  for the M = 10, q = 10.0 interaction. Qualitatively, the results are the same as Fig. 6. How- 

ever, the stronger interaction, with roughly 20 times more vorticity (see Fig. 5 )  causes the Haar-generated 

dipole growth to proceed faster. As seen in Fig. 4, by t / ~  = 5.99, the dipole widths are approximately 

Sj; by t /7  = 12.04, dipole-dipole interactions are very evident and strong. This is seen in the structure 

of the 51 plot; instead of a peak and a trough in a domain Sj, one sees multiple peakskroughs correspond- 

ing to the partially-merged state of the dipoles (see Fig. 4(d)). The dotted, dashed and solid lines are for 

t / ~  = 1.41,3.74 and 11.22. 
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A Numerical method 

Our numerical method is a second-order accurate Godunov scheme and includes interface tracking. This 

method is similar to the MUSCL [ 141 scheme. We will present the method in 1 D i.e. for v = G = 0. The 

governing equations for the flow are then 

By including the level set functions in the system of equations, the conservation laws are nor srricrlq hyper- 

bolic. In  the non-conservative form, the equation is written as 

where 

and 

(50) 

is used to determine the volume fraction of each gas in each cell and interpolate y linearly between yo 

and yb. The eigenvalues Xk of A are u - c, u, u + c and u, where c = (yp/p) is the sound speed. The set 

of left eigenvectors corresponding to the eigenvalues above are the rows of the matrix L 

a7 
au* AJ = - 

We may uncouple the equations by multiplying both the terms by L and use V, V = LU', as the 

dependent variable. 

The computational domain is divided into uniform cells of width Ax and labeled i = 1 . .  . N .  The 

i-th cell has interfaces at xi-1/2 and x i+ l /2 ,  the left boundary k i n g  the ith interface. Assuming that Up 

(U(z;, t")) is known, we calculate q". We calculate U* from U, and denote this as U* as these are cell 

average values. 

A piecewise linear distribution of U" is constructed in each cell using v'. To mitigate small wave- 

length oscillations Van Leer's monotonicity constraints [ 151 are applied in reconstructing the slope. Let Mi 
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represents the slope (actually the vector of slopes) in cell i. Then we have 

We now have a linear distribution of V l  i n  each cell as 

where Vl = LiU,'. We then solve the uncoupled equations at the cell interfaces at time t = tn+,12. This 

gives the value for the right side of the i-th interface as 

The left state, V::/l2, can be obtained similarly. 
I i  

k = 1,2,3,4 are for the four elements in the V vector. We recover the values of U' on the right and 

left sides of each cell interface as U;,! = L;JIVi,l and Utr = L;lV,,r.  Once we have the flow quantities 

at the interfaces at t = we solve the 1D Riemann problem, given a left and a right state UL, UR. 

Details of the Riemann problem are available in [ 161. The interfacial value of C is <i,l or c,,r if the interface 

moves to the right or left respectively. We use < to calculate y at a given point and form the interface fluxes. 

These are then used to obtain the new solution according to 

A t  is calculated using a CFL less than half. This method is extended to multiple dimensions easily. For 2D, 

alternating x and y sweeps generate second order accuracy formally [ 171. 
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B Projection of Wavelets onto a Spherical Harmonic Basis 

As mentioned previously, wavelet analysis and Fourier analysis provide different and complementary ways 

to represent information. The basis vectors for Fourier analysis represent global information. Wavelets, on 

the other hand, are completely local in nature. The relative efficiency of these two basis sets will simply 

depend on the nature of the information being represented. If the data is completely local in nature, then 

one would find that wavelet analysis provides a very efficient basis set. And, if the data is global in nature 

then Fourier analysis will be the preferred basis. There are, however, many situations in physics where the 

data is primarily composed of large scale slowly varying features with localized small-scale phenomenon 

appearing randomly. One can think of the large-scale basis functions in Fourier analysis as representing the 

global periodic large-scale features. Then one would superimpose upon this the small scale locally varying 

features using wavelet basis vectors. If, per chance, the small scale information is global then one would 

opt to use the small-scale eigenvectors from Fourier analysis. Precisely speaking one must look at the decay 

rates of the expansions in both the Fourier basis vectors and the wavelet basis vectors. Further, one must 

look at the projection of the wavelet basis functions onto the Fourier basis vectors. This information is 

sufficient to form an effective combination of Fourier analysis and wavelet analysis. 

For Fourier analysis we will have a representation of the form, 

j 

where X j  is the coefficient for the j - th basis function V,. As mention above, we assume the basis vectors 

are ordered from largest to smallest, i.e., X j  > Xj+ l .  Ordered in this manner we have a decaying spectrum. 

On the other hand, we can represent the data in wavelet basis with the notation, 

We are assuming that the data D is finite and thus our two representations are complete and the representa- 

tions as written above are lossless. 

Let us consider a slightly more general scenario with simplified notation and in a continuous domain. If 

we have two different orthonormal bases sets B1 and B2 with, 

m 

with 

(58)  

(59) 
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and the second representation in terms of the second basis, 

with 

then if one projects the representation in one basis set onto the second basis set, one obtains, 

where, 

af = a; 1 B;(z)B&(z)dx, (64) 

=< B:, Bk >. For the 

n 

so that the key to mapping from one basis set to the other basis is the matrix 

projection of wavelets onto Fourier modes we would, therefore, be interested in the behavior of, 

written in a continuous variable or 

p 2 ; y t e  = wlkvn I 

in discrete notation. In either case, the number ~ j , k , ~  is a measure of the similarity of the two basis vectors. 

So that as one projects wavelet basis functions of increasing scale onto Fourier basis functions of decreasing 

scale, one expects the projection to decrease in amplitude. Further, one expects that there will be a wavelet 

scale which most closely matches the predominant scale in a given Fourier basis vector. 

B.l Combining Spherical Harmonics and Wavelet Analysis 

As mentioned above, our overall goal in this manuscript is to combine the strong features of Fourier analysis 

with the strong features of wavelet analysis. We envision a function or data composed of contributions from 

both basis sets. For now we will not write limits on the integrals and summations. Such limits will be chosen 

so that various error criteria are satisfied, as outlined below. So, our expansion will be of the form, 
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Since the Fourier basis vectors are not orthogonal to the wavelets, the above representation has some redun- 

dancy or error that is proportional to the projection of the wavelets onto the Fourier modes, as explained 

above. That is, 

d j , k  = / f ( z ) w j , k ( z ) d x  - xi 1 K ( z ) w j , k ( z ) d z ,  (68) 
i 

represents the error in the above inner product of the wavelet with the surface data. This error, as discussed 

above, can be made as small as one desires by appropriately choosing which wavelets and Fourier modes to 

use in the expansion and by considering the spectrum in both the wavelet and Fourier basis sets. 

Conversely, the Fourier coefficient represents the projection of the data onto the corresponding Fourier 

basis vector and there will be a similar error term which depends ultimately on the projection of the wavelet 

basis functions on the Fourier basis vectors. That is, 

and the error term is, 

So, if we define E to be, 

then we can see that our two errors are, 

and, 

(74) 

Therefore, we can have very accurate estimates of the errors introduced by combining the two basis sets 

simply by using the above two expressions which require that we know the Fourier spectrum Xi, the wavelet 

spectrum d j , k  and the projection of the basis functions onto each other €*a,&. 

j , k  

The projection of wavelets onto Fourier modes or Fourier modes onto wavelets can be viewed also as the 

interference between the two representations. In principle we would prefer that this inference be zero, but 

it will not be due to the lack of orthogonality. Whereas wavelets have the ability detect scales with respect 

to position, the Fourier basis functions do not. We, therefore, need to modify our Q j , k  so that the position 
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parameter k is eliminated. We can do this in a number of ways, but we keep the presentation in the L2 norm 

and simply sum up the square of the interactions over k, 

and in  this manner we obtain a measure of the interaction or interference of the Fourier mode V, with the 

wavelets at wavelet scale j. 

iFrom the above section on wavelet analysis, we recall that we denote the finest wavelet scale of infor- 

mation as j = 0 and more coarse scales as j increases. Further, we denote the subspace spanned by wavelets 

at scale j as Wj. So, our C i a  is a measure of the orthogonality of the subspace Wj with the subspace spanned 

by the eigenvector V;. Though the issue of scale size for eigenvector V, is not well defined, we do expect 

for physical reasons that scales of information in V, will be larger than the scales of information in 

We expect this due to the previously defined ordering of the eigenvectors. That is, we expect that the overall 

general flow of the ocean model will have most of its energy in the larger scales with the smaller scales 

being less and less energetic as the scale size gets smaller. And, since the eigenvalues represent the energy 

in a given eigenvector we expect that the larger eigenvalues will correspond to larger scales. 

B.2 Role of Different Wavelets 

As mentioned above, we limit our study to the family of orthogonal wavelets known as the Daubechies 

wavelets. So, within this family of wavelets which one should we choose to work with. This will depend on 

a few factors. 

First of all, as one goes to higher and higher order wavelets, one finds that the non-zero region of the 

wavelet grows. That is the compact support of the wavelets is certainly maintained, but the support grows. 

Further, when the wavelets become higher and higher order, there is a region of their support which is non- 

zero but which can be very close to zero. Generally this close-to-zero area of support is not a desirable 

property and should generally be avoided in computer computations where roundoff error can become an 

issue for quantities close to zero. 

A second issue is the overall magnitude of the projection of the wavelets onto the Fourier modes. From 

the approximation theory presented above, one can see that in the wavelet approximation of sine waves that 

the truncation error, hence projection size, is governed by traditional polynomial truncation error. So, one 

expects an expression of the form, 
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property and should generally be avoided in computer computations where roundoff error can become an 

issue for quantities close to zero. 

A second issue is the overall magnitude of the projection of the wavelets onto the Fourier modes. From 

the approximation theory presented above, one can see that in the wavelet approximation of sine waves that 

the truncation error, hence projection size, is governed by traditional polynomial truncation error. So, one 

expects an expression of the form, 
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where p is the number of vanishing moments of the wavelet and k is the k - th sine mode being approxi- 

mated. From this expression one can see that a s p  increases that the magnitude of the projection and hence 

interference between the wavelet basis vectors and the Fourier modes will decrease. 

As indicated above, an upper bound on the size of projection of a wavelet onto a sine wave can be found 

from truncation error analysis of traditional polynomial interpolation. Therefore, if our eigenvector is now 

set to be a sin wave, V, = elnz, then our projection, 

will have an upper bound of, 

where p is the number of vanishing moments of the wavelet and Az is the distance between grid points in 

the original data sample. Since this expression is an upper bound, it should only be used as a rough guide to 

the projection magnitude. 

Now that we have a precise expression for E ,  we can assume a form for the Fourier spectrum and thereby 

obtain a more precise estimate of the error in mixing a Fourier basis with a wavelet basis. If we assume a 

Fourier spectrum of the form, 

then we can see that error EjSk as defined above will be bounded above by, 

This upper bound on error can be used to estimate the interference between the wavelet and the Fourier basis 

vectors and in the context of surface structure estimation, this interference can be made as small as is desired 

by choosing which Fourier modes and which wavelet scales to use. 
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